Time for a redesign? Use our checklist to assess your software's design needs—quick fixes or a full overhaul. ✉️

Filter UX Design Patterns

April 17, 2023
Fanny Vassilatos
Ceara Crawshaw

Going beyond e-commerce

Is it just us, or do all resources about filtering UX revolve around e-commerce? It might be “easier” to document the ins and outs of an interaction where you have control over the scope and labels, but that’s not what we’re here for.

In most enterprise applications, when filtering is needed, it’s because the data is complex and oftentimes user-generated. We’re typically dealing with long project titles, unpredictable custom fields, complex and additive variables, etc.

When are filters used in enterprise contexts?

Filters are relevant for any screen where many of the same element can be found. This is true for data table interfaces, card-based views or any list-type page.

Filters are also necessary for analytics-type screens & dashboards. In these types of UIs, users won’t be filtering the number of items visible but rather the scope or type of data included in rendering the charts and graphs. Think timeframe, audience types, which metrics shown, value ranges, etc.

🔗 Check out our in depth article on UX patterns for data tables.

Why filters matter

An excellent user experience for filtering means that users don’t have to ‘learn how to filter’. In fact, the smoother the filtering interaction, the more cognitive energy they’ll get to spend on identifying their ideal result(s). Let’s not waste their energy on an onerous interaction, let’s help them achieve their goals in the least taxing way possible.

Filters and their properties also double as discoverability agents that educate users about the data and what the overall system can offer.

When a filtering interaction is well designed and tailored to the type of data at hand, the experience feels intuitive and it allows users to feel in control and less overwhelmed.

Things to consider

What are your data made of?
When building filters, you need to be very aware of your data structure. What’s made of a character string versus a boolean? What’s associated with a timeframe or date? Numerical values versus text strings, quantitative vs qualitative values, etc. These different types of data require different types of selection inputs.

Mirror all data points
All your existing data points should be reflected in the filters. Ex. if you show “Last modified: Date” in the entry or list-item, your users will expect to be able to filter by modified date.

Filter and table ux pattern where columns and filters are the same

Understand your user’s priorities
Take some time to prioritize the order you’ll display your filters in. While it’s best to mirror all potential properties of your data, they don’t all share the same usability value in the eyes of your users. Which fields tend to be more looked at, modified most often? Those high-traffic properties deserve quicker access and higher visibility in your filter component.

Also note that last point stands for prioritizing your properties as well as prioritizing the values nested within. Now this varies greatly depending on how many values you need to show. With fewer values, you need to be pretty hands-on in deciding which comes first. With a greater set of values, you’re better off implementing a simple alphabetical order.

Filter dropdown interaction showing status lozenges ordered by most important
Statuses are better prioritized in order of urgency whereas location lists are more easily scannable in alphabetical order.

Know when to stop
You also need to come up with your own threshold where filters become overkill. Offering advanced filters to your users for a 10-item list might add unnecessary complexity to your interface. But you know your data and your users best, just make sure the depth of your filters reflects the depth and volume of the data itself.

How will your system handle fetching?
Or rather how fast can it be? This is important to be aware of because it will determine if your filters can be applied one at a time (directly after user input) or if the component needs a top-level ‘Apply’ button where all selected filters would be applied to the results at once.

Anatomy of a filter

The identifier is the targeted property or category
The value is the specific value

of the property you are looking for (amount threshold, specific date)

The relative is the intended relation

between identifier and value (greater than, between value x and value y) or between variables (and/or)

anatomy of filter showing identifier + relative + value

The combo of identifier + relative + value creates a variable (a.k.a a condition or a criteria)

A filter variable is comprised of an identifier, relative and value

Selecting the relative is often not up to the user and therefore needs to be thoughtfully prescribed by the system, a.k.a you. The relatives are sometimes packaged in the form of preset options, which, when well thought-out, can be precious time-savers for your users

UI filter anatomy showing a basic filter with consists of an identified, relative and value, joined by an 'and/or' relative with another filter logic shown below

For example, Toggl offers multiple preset options in their date range picker:

Toggl interaction preset filter options for date range

Otherwise, if your users need that granularity, relatives can also be made available in the UI for them to tweak as they wish. We’ll be touching more on advanced filters below.

Positioning

In terms of the positioning of your filters component, where it should be placed on the page, you basically have three options. It can either be as a left-hand vertical sidebar, directly inline with the content at hand, or as a horizontal filter bar. The decision depends on your context and scalability needs.

Sidebar

Level of context: 🔴 Low (Global: affects the whole page)
Scalability: 🟢 High

Filter UI layout with left hand sidebar

The left-hand sidebar is more scalable in terms of real estate, you can nest a greater number of values inside expandable sections that can scale vertically.

But this pattern affords that the filters affect the page as a whole. You need to make sure that every element on that page is effectively affected by the filtering options, otherwise, it risks creating confusion.

Inline

Level of context: 🟢 High (contextualized at the component-level)
Scalability: 🔴 Low

Dashboard UI with filter icon on each card

Filters can totally live at the component-level. Let’s say you have a dashboard made up of various charts, graphs and tables with discrepant data structures, you can’t have global filtering. The filtering component needs to be in-context. (p.s. we also have a UX pattern article on data dashboards).

You can also decide to keep some global filters at the page-level, but also provide smaller-scale filter mechanisms directly throughout the page. The downside here is that you can quickly run out of space. You need to stick to the essential.

Filter bar

Level of context: 🟡 Hybrid (can affect the whole page, or can affect one section at a time)
Scalability: 🟡 Medium

Filter UI with filter bar at the top of the screen

A filter bar can be placed above specific parts of the page, making it clear that only those items will reflect the filter input. This is a good option for pages made up of sections showcasing different data structures where global filtering could not work.

The horizontal bar option is a bit less scalable since it’s limited to the page width. That means the user needs to navigate across dropdown menus.

When to fetch?

How do you know when to fetch? This depends on the amount of data at hand, the performance of your system and also the user expectations.

Live-filtering

One option is to fetch results instantly. As soon as the user makes a selection, the data is refreshed and shows filtered results. This is expected for lower-stake interactions like selecting from a small list of filters. As soon as you’re dealing with multi-select filters or more complex inputs, you might need added friction like with a secondary trigger.

Live filtering interaction with results rendered instantly

Per-filter

The intermediate option here is to apply the filters one at a time. If you let the user finalize their selection within, say a multi-select dropdown, they can search, scroll around, pick and choose what they need without the distraction of the results updating automatically. Then, when they’re done with that particular identifier, they can trigger the results. This can be done either by clicking out of and closing said dropdown, or by clicking an inline ‘Apply’ button.

Filtering interaction with apply button contained within multi-select dropdown

Batch-filtering

A third option is to fetch the results only once. The user would navigate the various dropdowns, search and scroll away, and only when all their desired filters have been input, then they would click a global ‘Apply’ button. This method works best for very heavy datasets or low-performing apps.

Filtering interaction showing multiple criteria applied and cleared

Patterns you can use

Expandable sections

For a filter sidebar, expandable sections are a go-to. You can have a few items visible by default and provide a “Show All” mechanism. This increases discoverability and if you’ve prioritized your values well enough, you’ll be saving your users some precious clicks by avoiding the need to dig into those nested levels.

You also have the option to place the “Apply” button at the section level, as well as at the top-level, depending on what fetching type your system can afford.

Filter sidebar collapse and expand interaction

Dropdown menus

For filters laid out as a top bar, you’ll need to rely on dropdown menus to display additional options. Make sure the type of input reflects the type of data.

  • Radio buttons vs Checkboxes
    When should you allow single option versus multi-selection?
  • Booleans don’t need a dropdown
    True/False filters can afford to be a simple checkbox or toggle
  • Provide a search mechanism
    For dropdown menus with a large number of values
☝️Enable autofocus!
If you’re including search, make sure that as soon as the dropdown menu or expandable section has been clicked on, it’s possible for the user to start typing right away.

Table header filtering

If you’re building filters for a table interface, an effective way to go about designing filters for a table view is to embed the mechanism directly at a per-column level. This way, you’re maintaining the highest level of context for your users as they see the results change directly under the input.

Animated GIF of a table interaction where header items double as filters. A mouse cursor clicks on headers to open dropdown menus and do a selection inside checkbox lists

Additive lozenges

When you need your filters to be additive (remember relatives? That’s when we ask the system to add a variable on top of another and to exclude anything that doesn’t match the combined filter), lozenges or pills are a great way to convey that meaning.

Typically, those variables are pre-existing so users can select them from one or many dropdown menus and they should be easy to remove.

interaction showing filters in a sidebar being instantly applied to an interface and showing up as additive lozenges at the top of the UI

Date picker

A lot could be said about what makes a good date picker but let’s just go with overall best practices. For a good date picker, you need…

  • A quick-feedback mechanism to ensure the start date and end date are in sequential order. You need to make this dummy-proof for your users. People know in what order time goes. If anything, it’s typically badly designed systems that make this interaction harder than it should.
Airbnb UI interaction of sequential filters being applied in a date picker search
Airbnb makes it clear that anything prior to Check in date will select a new Check in date and that anything after Check in date will apply a range
  • Visibility on what’s selected. If a user has scrolled around in the calendar view, they should still be able to see what they’ve input before clicking out of the date picker. This means you’ll most likely need to display the selection as text somewhere in the picker.
Now that you have text, why not make it an editable field? This way you’re offering two input mechanisms. Plus, if you do it right, you’ll make the keyboard navigation enthusiasts very very happy. 💜⌨️💜
Date picker interaction with year input editable with keyboards
Spark mail offers great keyboard navigation in the date picker field of their Send Later functionality

  • Preset options AND custom selection. Preset values are very efficient when selecting timeframes. It’s come to be expected for users to be able to quickly view “this week”, “last week”, “month to date” and such. But it’s also very important to allow them to set a custom selection if they’re looking for something particular that your presets don’t cover.
Date picked interaction filtering out results for a bar chart
Toggl lets you seamlessly switch between preset options and a custom selection

‘Clear all’ interaction

No matter what pattern you decide fits your data and users best, don’t forget to include an easily accessible ‘Clear All’ option. ‘Clear All’ should be possible at the individual filter level and at the global level. From the user’s perspective, a ‘Clear All’ button is also a reminder that filters are applied.

Advanced filters as formulas

If your product is targeted to highly technical users, you might need to invest some time in mapping out the flow for advanced filtering.

Advanced filters can take many forms, it’s up to you to cater the experience according to your data and your users’ expectations. You get to pick the level of granularity your filters can afford.

Typically, advanced filtering is when filters become additive formulas more than simply selecting a value per identifier.

In this situation, not only are you giving users control of the relative, you can also allow them to create complex formulas by adding or excluding conditions. The combination of identifier + relative + value becomes a condition the results have to meet in order to be displayed. A condition is a bit like an if/then statement:

if ‘identifier A = value x‘ and/or
‘identifier B is between value y and value z
then show me the results

Results should match all/one/none of the conditions

Interaction showing a control for filter results to show you none, one or all of the matches

Identifier + Relative + Value

Filter interaction showing contents of status, condition and value

Add/exclude conditions

Advanced filtering interaction showing adding logic condition to filters

Displaying results

Embrace redundancy

When communicating feedback in the context of filtering, you really should embrace redundancy. Once applied, the filter selections will likely be hidden away in their dropdown menus or their expandable sections. You need to give them more prominent visibility. Otherwise, it’s easy for a user to forget they even selected filters at all.

In short you need three things:

  1. Keep the active filters visible in their original context (inside the menu)
  2. Indicate which filters have a selection nested inside (small numerical marker, bold text, background-color)
  3. Display them in a dedicated “Applied filters” overview/summary section (if you’re curious, here’s some more research on this)

Number one is a given, just preserve the state of the filters, duh.

Number two is about giving a high-level reminder of where users have made a selection. You can make the label bold and add a numeric total indicator ex. “(3)”  next to it. Here, you should decide on your maximum number to display in that indicator. If it’s possible for there to be 10,000 items selected, you might want to shorten your labels with a format like this: (1K+) to save some space.

Filter input interaction showing active filter being applied within filter dropdown using font bolding and bright red text

Number three is where it gets tricky. I already know what you’re thinking; “What if there’s a multi-select filter and not enough room to list them all?!?!” That’s a very valid question.

In that summary section, you need to decide how much room to dedicate per filter. You can list out ‘Aristotle, Socrates, Plato, Epicurus’ and decide that 40 characters is the max. Or you can indicate ‘Authors (4)’ and let the user open the dropdown again if they really do need to view their selection again.

If it’s possible for the applied filters to spread to more than the space you have available, you need to plan the wrapping behaviour. It’s common to have applied filters wrap on 2 or even 3 lines. More than that? You might want to consider a show more/show less mechanism to avoid your page scroll to become unpleasant.

Now about the positioning of said summary section:

If filters are in a sidebar, you can

Show the summary of applied filters at the top of the sidebar (make sure it’s sticky and has its own scroll if it gets too long!)

Sidebar filter example with brightly coloured active filters at the top

Or repeat them by bringing them in at the top of the page

Filter sidebar UI with active filters shown above main content area

If filters are in a horizontal bar,

Display the overview of applied filters below said bar, above the list items

Table interface example showing active filters applied underneath the filter bar

If filters are inline, a summary would be overkill. When filters are inline, they’re already highly-contextualized and typically smaller in scope. A summary isn’t necessary.

☝️ Don’t forget!
In addition to making sure you display the applied filters clearly, the ability to “clear all” is very important as well. In e-commerce there’s a very common mistake of applying filters and not showing them after, especially on mobile 🫥 (…we created a mobile filtering pattern article, for all sorts of handy tips and tricks).

Show the number of results

Another key element in communicating feedback is to display the number of results (see more on results in search ux). This provides users with feedback as to how effective their input was to reduce the result list and save time.

What if nothing shows up!? 😬

As much as possible, you want to avoid displaying no results. That’s why it’s good practice to place indicators of how many results a specific property or value represents directly at the input level. That way, you reduce the chances of the user intentionally selecting an option which clearly leads to “0”.

Airbnb filter example previewing number of results in apply button
By blocking out the list interface, Airbnb makes it even more clear how many results will match your filter selection

You can also have smart filters that detect if the value the user is trying to input will conflict with another value, and just make that option become disabled.

However, if you do end up needing to display an empty state, refer to our empty state pattern analysis article where we break down what you need to consider when dealing with the UX of empty states.

Scaling filters for large datasets

In enterprise software, the shear amount of filters and fine tuned control users require can get unruly and potentially unmanageable. Think about the case where the software is connected to a HR database like SAP, these datasets are vast. As we look at filter panels with potentially dozens of choices, we need to consider some ways to optimize for this experience, even when it’s a “large” experience.

Searching within filter panel

Adding search functionality into the filter panel itself can be very useful, especially for users who may know a fragment of the result that they want. Perhaps they want a filter “title” or perhaps they recall a value within a filter itself. Take both into consideration when creating your search experience.

Searching UI example showing user searching for filters in a panel to find the filter they are after.
a
👀🕵️♀️ Need to know more about the wide world of search? We dive deep into search UX  – looking at all the nuances around these sort of interactions, have a look see.

Customizing your filter view

If you’ve got a large dataset, considering the structure and defaults of your filters is paramount. Mapping all of the cases might be very difficult. We suggest you get a good default state which users can then deviate from. This means the main use cases are reflected in the filter panel, but the power to control that view on a per user basis can fill int he rest of the blanks for you.

Saving a custom view in a filter panel using a "favoriting" interaction

Saving filter queries

Users may regularly come to a page and perform a series of filters to find their ideal result. This may take a few steps and this may be something they repeat often. Either way, it qualifies as extra effort and wasted time if this must be done manually so over and over again. We suggest allowing users to save a query for use next time.

This and other flexible enterprise patterns are worth checking out, when you have lots of personas and use cases to design around. Check it out 😉

Wrapping up

Whatever you end up doing, remember the purpose of filtering is to save your users time, to reduce complexity in data-heavy pages and to enhance discoverability as to what your system can offer.

The best filtering experience lives at the intersection of your system’s capability and your user’s expectations. You need a great awareness of those factors in order to make the right decisions.

Great data-rich UX minus the mess

Our secret methodology for features that hinge on data.

Amazing design for data-rich features relies on:
Clarifying the problem space

  • Unveiling the mystery of the data
  • Establishing great collaborations that will lead to better data quality
  • Creating realistic designs that fully consider the data structure, limitations and capacities
  • Solidifying rationale through a process of understanding

Our Data Mapping Workshop is a tried and tested approach to understanding the data deeply, so you can design better (and look like a total pro in the process).

Data Mapping Workshop

$499 USD
Learn More

Download our Table UX Audit Checklist

Do a mini UX audit on your table views & find your trouble spots with this free guide.

Available in a printable version (pdf).

Please fill in the form below and it will be in your inbox shortly after.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
letters

Want to dig deeper on flow diagrams?

Be the first to know about our upcoming release!

If you found this intro content useful and find yourself needing to express yourself more efficiently on your software team, this training is for you. Our new flowchart training includes real-life enterprise stories and examples for using flowcharts for UX. You’ll get tips on how to make your diagramming efforts successful, how to derive info for the flow charts, and how to get others to use and participate in the diagramming process.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Contact Us

Intro to UX for Teams

A fun, high-impact injection that levels up your entire team and gets UX alignment without all the fluff. We cover everything from the basics of UX to real-life, enterprise examples that you might just sound a little familiar.

For up to 20 team members
7 Videos
55 min
$1000 USD

Explore our UX/UI Services

Curious about the possibility of working with the P&P crew on your enterprise software project? Check out our services.

Our services

Join our newsletter

Bringing enterprise-grade UX resources into the world to help you think better and have more interesting conversations with your crew!

Newsletter sign up

Data Tables Checklist

This free checklist lets you double check your data tables for their UX quality and assess various aspects which make or break the data table experience for your users.

PDF
Free

Data Tables Masterclass

We’ve crafted the masterclass to enrich and expand upon your experience reading our article. Peppering in design principles, more examples and workflow nuances that’ll help you deliver high quality UX.

90 MIN
$149
$99 USD

Curious about our Products for Enterprise software?

Check out what other goodies we have for you and your team

Explore products

Data Tables Checklist

This free checklist lets you double check your data tables for their UX quality and assess various aspects which make or break the data table experience for your users.

PDF
Free

Explore our UX/UI Services

Curious about the possibility of working with the P&P crew on your enterprise software project? Check out our services.

Our services

Join our newsletter

Bringing enterprise-grade UX resources into the world to help you think better and have more interesting conversations with your crew!

Newsletter sign up

Interaction Design Masterclass

Ready to level up with a 1 hour masterclass full of real, enterprise-grade examples?

Check out the Masterclass

Need expert ux help?

Explore your needs and possible solutions in a free, 30 minute session with us.

Book Free Session

Get your free Redesign Assessment Checklist!

We've put together a 14 page PDF with situational questions in a variety of focus areas to help you figure out what kind of needs and solutions you can explore for your software.

Get the Redesign Assement Checklist

Get your Heuristic Report Template Kit

Spend your time and life force actually doing your heuristic evaluation, rather than endless visual fiddling. Complete with a easy to customize Figma file and comprehensive how to videos!

Check out the Heuristic Report Template Kit